An integrated MOGA approach to determine the Pareto-optimal kanban number and size for a JIT system

نویسندگان

  • Tung-Hsu Hou
  • Wei-Chung Hu
چکیده

In a just-in-time (JIT) system, kanban number and size represent the inventory level of work-in-process (WIP) or purchasing parts. It is an important issue to determine the feasible kanban number and size. In this research, an integrated multiple-objective genetic algorithm (MOGA) based system is developed to determine the Pareto-optimal kanban number and size, and is applied in a JIT-oriented manufacturing company to demonstrate its feasibility. In the integrated system, a simulation model is built to simulate the multi-stage JIT production system of the company. Then an experimental design of different kanban numbers and sizes for different production stages is applied to test the production performances. Based on the simulation results, regression models are built to represent the relationships between the kanban numbers of different production stages and the production performance. These regression models are then used in genetic algorithms to generate the performance for chromosomes. Finally, the proposed multi-objective genetic algorithm (MOGA) based system uses the generalized Parato-based scale independent fitness function (GPSIFF) as the fitness function to evaluate the multiple objectives for chromosomes and used to find the Pareto-optimal kanban number and size for multiple objectives, i.e., maximizing mean throughput rate and minimizing mean total WIP inventory. A comparison in the performance of the proposed system with that of the current kanban number is conducted to demonstrate the feasibility of the proposed system. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Electromagnetism Algorithm for Determining the Number of kanbans in a Multi-stage Supply Chain System

This paper studies the multi-stage supply chain system (MSSCM) controlled by the kanban mechanism. In the kanban system, decision making is based on the number of kanbans as well as batch sizes. A kanban mechanism is employed to assist in linking different production processes in a supply chain system in order to implement the scope of just-in-time (JIT) philosophy. For a MSSCM, a mixed-integer...

متن کامل

Integrated JIT Lot-Splitting Model with Setup Time Reduction for Different Delivery Policy using PSO Algorithm

This article develops an integrated JIT lot-splitting model for a single supplier and a single buyer. In this model we consider reduction of setup time, and the optimal lot size are obtained due to reduced setup time in the context of joint optimization for both buyer and supplier, under deterministic condition with a single product. Two cases are discussed: Single Delivery (SD) case, and Multi...

متن کامل

Simulation of a Two Cards JIT Production System

This paper presents a summary of the results from the simulation of a given two-stages production system which uses JIT. The system consists of an assembly line with two automated assembly cells and two assembly stock points and one manufacturing cell with three manufacturing stock points for storing reserved parts and one receiving stock. Carts with fixed capacity are used for handling the par...

متن کامل

Simulation of a Two Cards JIT Production System

This paper presents a summary of the results from the simulation of a given two-stages production system which uses JIT. The system consists of an assembly line with two automated assembly cells and two assembly stock points and one manufacturing cell with three manufacturing stock points for storing reserved parts and one receiving stock. Carts with fixed capacity are used for handling the par...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011